首页 > IPFS > 正文

Filecoin白皮书(第3、4、5章)

分类:新闻玩币归赵IPFS挖矿攻略 2018-05-20 22:55

3 复制证明与时空证明

  在Filecoin协议中,存储供应商必须让他们的客户相信,客户所付费的数据已经被他们存储。在实践中,存储供应商将生成"存储证明"(POS)给区块链网络(或客户自己)来验证。

  在本节中,我们介绍和概述在Filecoin中所使用的“复制证明”n (PoRep)和“时空证明”(PoSt)实现方案。

3.1 动机

  存储证明(POS)方案类似“数据持有性验证”(PDP)[2]和“可恢复性证明”(PoR)[3,4]方案。它允许一个将数据外包给服务器(既证明人P)的用户(既验证者V)可以反复检查服务器是否依然存储数据D。用户可以用比下载数据还高效的方式来验证他外包给服务器的数据的完整性。服务器通过对一组随机数据块进行采样和提交小量数据来生成拥有的概率证明作为给用户的响应协议。

  PDP和PoR方案只保证了证明人在响应的时候拥有某些数据。在Filecoin中,我们需要更强大的保障能阻止作恶矿工利用不提供存储却获得奖励的三种类型攻击:女巫攻击(Sybil attack)、外包攻击(outsourcing attacks)、代攻击?(generation attacks)。

  女巫攻击:作恶矿工可能通过创建多个女巫身份假装物理存储很多副本(从中获取奖励),但实际上只存储一次。

  外包攻击:依赖于可以快速从其他存储提供商获取数据,作恶矿工可能承诺能存储比他们实际物理存储容量更大的数据。

  代攻击:作恶矿工可能宣称要存储大量的数据,相反的他们使用小程序有效地生成请求。如果这个小程序小于所宣称要存储的数据,则作恶矿工在Filecoin获取区块奖励的可能性增加了,因为这是和矿工当前使用量成正比的。

3.2 复制证明

  “复制证明”(PoRep)是一个新型的存储证明。它允许服务器(既证明人P)说服用户(既验证者V)一些数据D已被复制到它唯一的专用物理存储上了。我们的方案是一种交互式协议。当证明人P:(a)承诺存储某数据D的n个不同的副本(独立物理副本),然后(b)通过响应协议来说服验证者V,P确实已经存储了每个副本。据我们所知PoRep改善了PDP和PoR方案,阻止了女巫攻击、外包攻击、代攻击。

  请注意,正式的定义,它的属性描述,和PoRep的深入研究,我们参考了[5]

定义3.1

  PoRep方案使得有效的证明人P能说服验证者V,数据D的一个P专用的独立物理副本R已被存储。PoRep协议其特征是多项式时间算法的元组:(Setup, Prove, Verify)

  PoRep.Setup(1λ, D) → R, SP, SV, 其中SP和SV是P和V的特点方案的设置变量,λ是一个安全参数。PoRep.Setup用来生成副本R,并且给予P和V必要的信息来运行PoRep.Prove 和 PoRep.Verify。一些方案可能要求证明人或者是有互动的第三方去运算PoRep.Setup。

  PoRep.Prove(SP, R, c) → πc,其中c是验证人V发出的随机验证, πc是证明人产生的可以访问数据D的特定副本R的证明。PoRep.Prove由P(证明人)为V(验证者)运行生成πc。

  PoRep.Verify(Sv, c, πc) → {0, 1},用来检测证明是否是正确。PoRep.Verify由V运行和说服V相信P已经存储了R。

3.3 时空证明

  存储证明方案允许用户请求检查存储提供商当时是否已经存储了外包数据。我们如何使用PoS方案来证明数据在一段时间内都已经被存储了?这个问题的一个自然的答案是要求用户重复(例如每分钟)对存储提供商发送请求。然而每次交互所需要的通信复杂度会成为类似Filecoin这样的系统的瓶颈,因为存储提供商被要求提交他们的证明到区块链网络。

  为了回答这个问题,我们介绍了新的证明,“时空证明”,它可以让验证者检查存储提供商是否在一段时间内存储了他/她的外包数据。这对提供商的直接要求是:(1)生成顺序的存储证明(在我们的例子里是“复制证明”)来作为确定时间的一种方法 (2)组成递归执行来生成简单的证明。

定义3.2

  *(时空证明)Post方案使得有效的证明人P能够说服一个验证者V相信P在一段时间内已经存储了一些数据D。PoSt其特征是多项式时间算法的元组:(Setup, Prove, Verify)

  PoSt.Setup(1λ,D)->Sp,Sv,其中SP和SV是P和V的特点方案的设置变量,λ是一个安全参数。PoSt.Setup用来给予P和V必要的信息来运行PoSt.Prove 和 PoSt.Prove。一些方案可能要求证明人或者是有互动的第三方去运算PoSt.Setup。

  PoSt.Prove(Sp, D, c, t) → πc,其中c是验证人V发出的随机验证, πc是证明人在一段时间内可以访问数据D的的证明。PoSt.Prove由P(证明人)为V(验证者)运行生成πc。

  PoSt.Verify(Sv, c, t, πc) → {0, 1},用来检测证明是否是正确。PoSt.Verify由V运行和说服V相信P在一段时间内已经存储了R。

3.4 PoRep和PoSt实际应用

  我们感兴趣的是PoRep和PoSt的应用构建,可以应用于现存系统并且不依赖于可信任的第三方或者硬件。我们给出了PoRep的一个构建(请参见基于密封的复制证明[5]),它在Setup过程中需要一个非常慢的顺序计算密封的执行来生成副本。PoRep和PoSt的协议草图在图4给出,Post的底层机制的证明步骤在图3中。

3.4.1 构建加密区块

  我们使用一个防碰撞的散列函数:CRH : {0, 1}*→ {0, 1}O(λ)。我们还使用了一个防碰撞散列函数MerkleCRH,它将字符串分割成多个部分,构造出二叉树并递归应用CRH,然后输出树根。

zk-SNARKs

  我们的PoRep和PoSt的实际实现依赖于零知识证明的简洁的非交互式知识论(zk-SNARKs)[6,7,8]。因为zk-SNARKs是简洁的,所以证明很短并且很容易验证。更正式地,让L为NP语言,C为L的决策电路。受信任的一方进行一次设置阶段,产生两个公共密钥:证明密钥pk和验证密钥vk。证明密钥pk使任何(不可信)的证明者都能产生证明证明π,对于她选择的实例x,x∈L。非交互式证明π是零知识和知识证明。任何人都可以使用验证密钥vk验证证明π。特别是zk-SNARK的证明可公开验证:任何人都可以验证π,而不与产生π的证明者进行交互。证明π具有恒定的大小,并且可以在| x |中线性的时间内验证。

  可满足电路可靠?的zk-SNARKs是多项式时间算法的元组:(KeyGen, Prove, Verify)

  KeyGen(1λ,C)→ (pk, vk),输入安全参数λ和电路C,KeyGen产生概率样本pk和vk。这两个键作为公共参数发布,可在Lc上用于证明/验证。

  Prove(pk, x, w) → π 在输入pk、输入x和NP声明w的见证时,证明人为语句x∈LC输出非交互式证明π。

  Verify(vk, x, π) → {0, 1} 当输入vk,输入x和证明 π,验证者验证输出1是否满足x ∈ LC。

  我们建议感兴趣的读者参看[6,7,8]对zk-SNARK系统的正式介绍和实现。

  通常而言这些系统要求KeyGen是由可信任参与方来运行。创新的可扩展计算完整性和隐私(SCIP)系统[9]展示了在假设信任的前提下,一个有希望的方向来避免这个初始化步骤。

3.4.2 密封操作

  密封操作的作用是(1)通过要求证明人存储对于他们公钥唯一的数据D的伪随机排列副本成为物理的独立复制,使得提交存储n个副本导致了n个独立的磁盘空间(因此是副本存储大小的n倍)和(2)在PoRep.Setup的时候强制生成副本实质上会花费比预计响应请求更多的时间。有关密封操作的更正式定义,请参见[5]。上述的操作可以用SealτAES−256来实现,并且τ使得SealτAES−256需要花费比诚实的证明验证请求序列多10-100倍的时间。请注意,对τ的选择是重要的,这使得运行SealτBC比证明人随机访问R花费更多时间显得更加明显。

3.4.3 PoRep构建实践

  这节描述PoRep协议的构建并已在图4包括了一个简单协议草图。实现和优化的细节略过了。

创建副本

  Setup算法通过密封算法生成一个副本并提供证明。证明人生成副本并将输出(不包括R)发送给验证者。

  Setup

  inputs:

  – prover key pair (pkP ,skP )

  – prover SEAL key pkSEAL

  – data D

  outputs: replica R, Merkle root rt of R, proof πSEAL

证明存储

  Prove算法生成副本的存储证明。证明人收到来自验证者的随机挑战,要求在树根为rt的Merkle树R中确认特定的叶子节点Rc。证明人生成关于从树根rt到叶子Rc的路径的知识证明。

  Prove

  inputs:

  – prover Proof-of-Storage key pkPOS

  – replica R

  – random challenge c

  outputs: a proof πPOS

验证证明

  Verify算法检查所给的源数据的哈希和副本的Merkle树根的存储证明的有效性。证明是公开可验证的:分布式系统的节点维护账本和对特定数据感兴趣的可以验证这些证明。

  Verify

  inputs:

  – prover public key, pkP

  – verifier SEAL and POS keys vkSEAL, vkPOS

  – hash of data D, hD

  – Merkle root of replica R, rt

  – random challenge, c

  – tuple of proofs, (πSEAL, πPOS)

  outputs: bit b, equals 1 if proofs are valid

3.4.4 PoSt构建实践

  这节描述Post协议的构建并已在图4中包含了一个简单协议草图。实现和优化的细节略过了。

  Setup和Verify算法和上面的PoRep构建是一样的。所以我们这里值描述Prove。

空间和空间的证明

  Prove算法为副本生成“时空证明”。证明人接收到来自于验证者的随机挑战,并顺序生成”复制证明“,然后使用证明的输出作为另一个输入做指定t次迭代(见图3)。

  Prove

  inputs:

  – prover PoSt key pkPOST

  – replica R

  – random challenge c

  – time parameter t

  outputs: a proof πPOST

3.5 在Filecoin的应用

  Filecoin协议采用”时空证明“来审核矿工提供的存储。为了在Filecoin中使用PoSt,因为没有指定的验证者,并且我们想要任何网络成员都能够验证,所以我们把方案改成了非交互式。因为我们的验证者是在public-coin模型中运行,所以我们可以从区块链中提取随机性来发出挑战。

4 Filecoin:DSN构建

  Filecoin DSN是可升级,可公开验证和激励式设计的去中心化的存储网络。客户为了存储数据和检索数据向矿工网络付费。矿工提供磁盘空间和带宽来赚取费用。矿工只有在网络可以审计他们的服务是否正确提供的时候才会收到付款。

  在本节中,我们介绍基于DSN的定义和”时空证明“的Filecoin DSN构建。

4.1 环境

  任何用户都可以作为客户端、存储矿工和/或检索矿工来参与Filecoin网络。

  客户在DSN中通过Put和Get请求存储数据或者检索数据,并为此付费。

  存储矿工为网络提供数据存储。存储矿工通过提供他们的磁盘空间和响应Pug请求来参与Filecoin。要想成为存储矿工,用户必须用与存储空间成比例的抵押品来抵押。存储矿工通过在特定时间存储数据来响应用户的Put请求。存储矿工生成"时空证明”,并提交到区块链网络来证明他们在特定时间内存储了数据。假如证明无效或丢失,那存储矿工将被罚没他们的部分抵押品。存储矿工也有资格挖取新区块,如果挖到了新块,矿工就能得到挖取新块的奖励和包含在块中的交易费。

  检索矿工为网络提供数据检索服务。检索矿工通过提供用户Get请求所需要的数据来参与Filecoin。和存储矿工不同,他们不需要抵押,不需要提交存储数据,不需要提供存储证明。存储矿工可以同时也作为检索矿工参与网络。检索矿工可以直接从客户或者从检索市场赚取收益。

4.1.2 网络 N

  我们将运行所有运行Filecoin全节点的所有用户细化为一个抽象实体:网络。该网络作为运行管理协议的中介。简单的说,Filecoin区块链的每个新块,全节点管理可用的存储,验证抵押品,审核存储证明已经修复可能的故障。

4.1.3 账本

  我们的协议适用于基于账本的货币。为了通用,我们称之为“账本” L。在任何给定的时间t(称为时期),所有的用户都能访问Lt。当处于时期t的时候,账本是追加式的,它由顺序的一系列交易组成。Filecoin DSN协议可以在运行验证Filecoin的证明的任意账本上实现。在第六节中我们展示了我们如何基于有用的工作构建一个账本。

4.1.4 市场

  存储需求和供给组成了两个Filecoin市场:存储市场和检索市场。这两个市场是两个去中心化交易所,这会在第5节中详细解释。简而言之,客户和矿工们通过向各自的市场提交订单来设定他们请求服务或者提供服务的订单的价格。交易所为客户和矿工们提供了一种方式来查看匹配出价并执行订单。如果服务请求被成功满足,通过运行管理协议,网络保证了矿工得到报酬,客户将被收取费用。

4.2 数据结构

  碎片是客户在DSN所存储数据的一部分。例如,数据是可以任意划分为许多片,并且每片都可以有不同集合的存储矿工来存储。

扇区

  扇区是存款矿工向网络提供的一些磁盘空间。矿工将客户数据的碎片存储到扇区,并通过他们的服务来赚取令牌。为了存储碎片,矿工们必须向网络抵押他们的扇区。

分配表

  分配表式衣柜数据结构,可以跟踪碎片和其分配的扇区。分配表在长辈的每个区块都会更新,Merkle根存储在最新的区块中。在实践中,该表用来保持DSN的状态,它使得在证明验证的过程中可以快速查找。更详细的信息,请参看图5。

订单

  订单式请求或提供服务的意向声明。客户向市场提交投标订单来请求服务(存储数据的存储市场和检索数据的检索市场),矿工们提交报价订单来提供服务。订单数据结构如图10所示。市场协议将在第5节详细介绍。

订单簿

  订单簿是订单的集合。请查看第5.2.2节的存储市场订单簿和第5.3.3节的检索市场订单簿。

抵押

  抵押是像网络提供存储(特别是扇区)的承诺。存储矿工必须将抵押提交给账本,以便能在存储市场接受订单。抵押包括了抵押扇区的大小和存储矿工的存放的抵押品。

4.3 协议

  在本节中,我们通过描述客户端、矿工和网络执行的操作来概述Filecoin DSN。我们在图7中介绍了Get和Pug协议的方法,和在图8中的管理协议。一个协议执行的示例如图6所示。图1是Filecoin协议概览。

4.3.1 客户生命周期

  我们给出客户生命周期的概览:在第5节接下来的协议会做深度的解析。

  Put:客户将数据存储于Filecoin

  客户可以通过向Filecoin中的矿工支付令牌来存储他们的数据。第5.2节详细介绍了Put协议。

  客户通过Put协议向存储市场的订单簿提交投标订单。当找到矿工的匹配报价订单的时候,客户会将数据发给矿工,并且双方签署交易订单将其提交到存储市场订单簿。客户可以通过提交的订单来决定数据的物理副本数量。更高的冗余度会有更高的存储故障容忍度。

  Get:客户从Filecoin检索数据。客户可以通过使用Filecoin 令牌向存储矿工付费来检索任何数据。Get协议在第5.3节有详细描述。客户端通过执行Get协议向检索市场订单簿提交投标订单。当找到匹配的矿工报价订单后,客户会收到来自矿工的碎片。当收到的时候,双方对交易订单进行签名提交到区块链来确认交易成功。

  4.3.2 挖矿周期(对于存储矿工)我们给出一个非正式的挖矿周期概述。

  抵押:存储矿工向网络抵押存储。

Manage.PledgeSector

  存储矿工通过在抵押交易中存放抵押品来保证向区块链提供存储。通过,抵押品被抵押一段期限是为了提供服务,如果矿工为他们所承诺提交存储的数据生成存储证明,抵押品就回返还给他们。如果存储证明失败了,一定数量的抵押品就会损失。他们设定价格并向市场订单簿提交报价订单,一旦抵押交易在区块链中出现,矿工就能在存储市场中提供他们的存储。

Manage.PledgeSector

  • inputs:

  – current allocation table allocTable

  – pledge request pledge

  • outputs: allocTable'

Put.AddOrders

  接收订单:存储矿工从存储市场获取存储请求。他们设定价格并通关过向市场订单簿提交报价订单,一旦抵押交易出现在区块链中,矿工就能在存储市场中提供他们的存储。

  Put.AddOrders

  • inputs: list of orders O1..On

  • outputs: bit b, equals 1 if successful

Put.MatchOrders

  通过来检查是否和客户的报价订单匹配一致。

  Put.MatchOrders

  • inputs:

  – the current Storage Market OrderBook – query order to match Oq

  • outputs: matching orders O1..On

Put.ReceivePiece

  一定订单匹配,客户会讲他们的数据发给存储矿工。存储矿工接收到数据的时候,运行。数据被接收完之后,矿工和客户签收订单并将其提交到区块链。

  Put.ReceivePiece

  • inputs: – signing key for Mj

  – current orderbook OrderBook

  – ask order Oask

  – bid order Obid

  – piece p

  • outputs: deal order Odealsigned by Ciand Mj

  密封:存储矿工为未来的证明准备碎片。

  存储矿工的存储切分为扇区,每个扇区包括了分配给矿工的碎片。网络通过分配表来跟踪每个存储矿工的扇区。当存储矿工的扇区填满了,这个扇区就被密封起来。密封是一种缓慢的顺序操作。将扇区中的数据转换成为副本,然后将数据的唯一物理副本与存储矿工的公钥相关联。在“复制证明”期间密封式必须的操作。如下所述在第3.4节。

Manage.SealSector

  • inputs:

  – miner public/private key pair M

  – sector index j

  – allocation table allocTable

  • outputs: a proof πSEAL, a root hash rt

  证明:存储矿工证明他们正在存储所承诺的碎片(数据)。

  当存储矿工分配数据时,必须重复生成复制证明以保证他们正在存储数据(有关更多详细信息,请参看第3节)证明发布在区块链中,并由网络来验证。

Manage.ProveSector

  • inputs:

  – miner public/private key pair M

  – sector index j

  – challenge c

  • outputs: a proof πPOS

4.3.3 挖矿周期(对于检索矿工)

  我们给出一个非正式的挖矿周期概述。

  收到订单:检索矿工从检索市场得到获取数据的请求。

  检索矿工设置价格并向市场订单簿增加报价订单,并通过向网络发送报价单来提供数据。

Get.AddOrders

  • inputs: list of orders O1..On

  • outputs: none

  然后检索矿工检查是否与客户的报价订单匹配一致。

Get.MatchOrders

  • inputs:

  – the current Retrieval Market OrderBook

  – query order to match Oq

  • outputs: matching orders O1..On

  发送:检索矿工向客户发送数据碎片。

  一旦订单匹配,检索矿工就将数据发送给客户(第5.3节有详细描述)。当数据被接收完成,矿工和客户就签署交易比ing提交到区块链。

Put.SendPieces

  • inputs: – an ask order Oask

  – a bid order Obid

  – a piece p

  • outputs: a deal order Odealsigned by Mi

4.3.4 网络周期

  我们给出一个非正式的网络操作概述。

  1.分配:网络将客户的碎片分配给存储矿工的扇区。

  客户通过向存储市场提交报价订单来启动Put协议。当询价单和报价单匹配的时候,参与的各方共同承诺交易并向市场提交成交的订单。此时,网络将数据分配给矿工,并将其记录到分配表中。

Manage.AssignOrders

  • inputs:

  – deal orders O1deal..Ondeal

  – allocation table allocTable

  • outputs: updated allocation table allocTable'

  修复:网络发现故障并试图进行修复

  所有的存储分配对于网络中的每个参与者都是公开的。对于每个块,网络会检查每个需要的证明都存在,检查它们是否有效,因此采取行动:

Manage.RepairOrders

  • inputs:

  – current time t

  – current ledger L

  – table of storage allocations allocTable

  • outputs: orders to repair O1deal..Ondeal, updated allocation table allocTable

  如果有任何证明的丢失或无效,网络会通过扣除部分抵押品的方式来惩罚存储矿工。

  如果大量证明丢失或无效(由系统参数Δfault定义),网络会认定存储矿工存在故障,将订单设定为失败,并为同样的数据引入新订单进入市场。

  如果所有存储该数据的存储矿工都有故障,则该数据丢失,客户获得退款。

4.4 担保和要求

  以下是Filecoin DSN如何实现完整性、可检索性,公开可验证性和激励兼容性。

  实现完整性 数据碎片以加密哈希命名。一个Put请求后,客户只需要存储哈希即可通过Get操作来检索数据,并可以验证收到的数据的完整性。

  实现可恢复性 在Put请求中,客户指定副本因子和代码期望擦除类型。假设给定的m个存储矿工存储数据,可以容忍最多f个故障,则该方式是(f, m)-tolerant存储。通过在不同的存储提供商存储数据,客户端可以增加恢复的机会,以防存储矿工下线或者消失。

  实现公开可验证和可审核性 存储矿工需要提交其存储 (πSEAL, πPOST)的证明到区块链。网络中的任意用户都可以在不访问外包数据的情况下验证这些证明的有效性。另外由于这些证明都是存储在区块链上的,所以操作痕迹可以随时审核。

  实现激励兼容性 不正式的说,矿工通过提供存储而获得奖励。当矿工承诺存储一些数据的时候,它们需要生成证明。如果矿工忽略了证明就回被惩罚(通过损失部分抵押品),并且不会收到存储的奖励。

  实现保密性 如果客户希望他们的数据被隐私存储,那客户必须在数据提交到网络之前先进行加密。

5 Filecoin的存储和检索市场

  Filecoin有两个市场:存储市场和检索市场。这两个市场有同样的结构但不同的设计。存储市场允许客户为矿工存储数据而付费。检索数据允许客户为矿工提供检索数据传递而付费。在这两种情况下,客户和矿工可以设置报价和需求价格或者接受当前报价。这个交易是由网络来运行的-Filecoin中全节点是拟人化的。网络保证矿工在提供服务时可以得到客户的奖励。

5.1 验证市场

  交易市场是促进特定商品和服务交换的协议。它们使得买家和买家促成交易。对于我们而言,我们要求交易是可验证的:去中心化网络的参与者必须能够在买家和卖家间验证交易。我们提出验证市场的概念。它没有单一的实体来管理交易,交易是透明的,任何人都可以匿名参与。可验证市场协议使得服务的交易去中心化:订单簿的一致性,订单结算和服务的正确执行是可以由参与者独立验证的-在Filecoin里面的矿工和全节点。我们简化可验证市场来进行以下构建:

定义5.1

  可验证市场是一个有两个阶段的协议:订单匹配和结算。订单是购买意图或者出售商品或服务安全性的表述,订单簿就是所有可用订单的列表。

5.2 存储市场

  存储市场是可验证的市场,它允许客户(即买家)请求他们的存储数据和存储矿工(即卖家)提供他们的存储空间。

5.2.1 需求

  我们根据以下需求来设计存储市场协议:

  链式订单簿 重要的是(1)存储空格的订单式公开的,所以最低价格的订单总是网络知名的,客户可以对订单做出明智的决定(2)客户订单必须始终提交给订单,即使他们接受接受最低的价格,这样市场就可以对新的报价做出反应。因此我们要求订单添加到Filecoin区块链,为的时能被加入订单簿。

  参与者投入资源:我们要求参与双方承诺他们的资源作为避免损害的一种方式。为了避免存储矿工不提供服务和避免客户没有可用的资金。为了参与存储市场,存储矿工必须保证在DSN中存入与其存储量成比例的抵押品(更多详细信息请参看第4.3.3节)。通过这种方式,网络可以惩罚那些承诺存储数据但又不提供存储证明的存储矿工。同样的,客户必须向订单充入特定数量的资金,以这种方式保证在结算期间的资金可用性。

  故障自处理 只有在存储矿工反复证明他们已经在约定的时间内存储了数据的情况下,订单才会结算给矿工。网络必须能够验证这些证明的存在性和正确性并且它们是按照规则来处理的。在4.3.4节有修复部分的概述。

5.2.2 数据结构

  有三种类型的订单:出价订单,询价订单和交易订单。存储矿工创建询价订单添加存储,客户创建出价订单请求存储,当双方对价格达成一致时,他们共同创建处理订单。订单的数据结构和订单参数的明确定义如图10所示。

Put订单簿

  存储市场的订单簿是目前有效和开放的询价,出价和 交易订单的集合。用户可以通过Put协议中定义的方法与订单簿进行交互:AddOrders,MatchOrders如图7所示。

  订单簿是公开的,并且每个诚实的用户都有同样的订单簿试图。在每个周期,如果新的订单交易出现在新的区块中那它将被添加到订单簿中。如果订单被取消,取消或者结算,则会被删除。订单将被添加到区块链中,因此在订单簿中如果是有效的:

定义5.2

  我们定义出价,询价,交易订单的有效性:

  (有效出价单)从客户端发出的投标单Ci,Obid:= (hsize, funds[, price,time, coll, coding])>Ci,如果满足下面的条件就是有效的:

  Ci在他们的账户里面至少有可用的资金

  时间没有超时

  订单必须保证最少的存储周期(这是个系统参数)

  (有效询价单)从存储矿工发出的询价单Mi,Oask:= (hspace, pricei)Mi,如果满足下面的条件就是有效的:

  Mi承诺为矿工,并且质押期不会在订单周期之前到期

  空间必须小于Mi的可用存储。Mi在订单中减去承诺的存储(在询价订单和交易订单中)

  (有效交易订单)交易订单Odeal:= (hask, bid,ts)Ci,Mj,如果满足下面的条件就是有效的:

  询问参考订单Oask,使得:它由Ci签署,且在存储市场的订单簿中没有其他订单涉及它。

  出价订单参考订单Obid,使得:它由Mj签署,且在存储市场的订单簿中没有其他订单涉及它。

  ts 不能设置为将来时间或者太早的时间

  如果作恶客户端从存储矿工出收到了签名的交易,但从来没有将其添加到订单簿,那么存储矿工就无法重新使用订单中提交的存储。这个字段ts就可以防止这种攻击,因为,在超过ts之后,订单变得无效,将无法在订单簿中提交。

5.2.3 存储市场协议

  简而言之,存储市场协议分为两个阶段:订单匹配和结算:

  订单匹配:客户端和存储矿工通过提交交易到区块链来将订单提交到订单簿(步骤1)。当订单匹配时,客户端发送数据碎片给存储矿工,双方签署交易并提交到订单簿(步骤2)。

  结算: 存储矿工密封扇区(步骤3a),生成扇区所包含的碎片的存储证明,并将其定期提交到区块链(步骤3b);同时,其余的网络必须验证矿工生成的证明并修复可能的故障(步骤3c)。

  存储市场协议在图11中详细描述。

5.3 检索市场

  检索市场允许客户端请求检索特定的数据,由检索矿工提供这个服务。与存储矿工不同,检索矿工不要求在特定时间周期内存储数据或者生成存储证明。在网络中的任何用户都可以成为检索矿工,通过提供提供检索服务来赚取Filecoin令牌。检索矿工可以直接从客户端或者检索接收数据碎片,也可以存储它们成为存储矿工。

5.3.1 需求

  我们根据以下的需求来设计检索市场协议:

链下订单簿

  客户端必须能够找到提供所需要数据碎片的检索矿工,并且在定价之后直接交换。这意味着订单簿不能通过区块链来运行-因为这将成为快速检索请求的瓶颈。相反的,参与者只能看到订单簿的部分视图。我们要求双方传播自己的订单。

无信任方检索

  公平交换的不可能性[10]提醒我们双方不可能没有信任方的进行交流。在存储市场中,区块链网络作为去中心化信任方来验证存储矿工提供的存储。在检索市场,检索矿工和客户端在没有网络见证所交换文件的情况下来交换数据。我们通过要求检查矿工将数据分割成多个部分并将每个部分发送给客户端来达到这个目的,矿工们将收到付款。在这种方式中,如果客户端停止付款,或者矿工停止发送数据,任何一方都可以终止这个交易。注意的是,我们必须总是假设总是有一个诚实的检索矿工。

支付通道

  客户端当提交付款的时候可以立即进行检索感兴趣的碎片。检索矿工只有在确认收到付款的时候才会提供数据碎片。通过公共账本来确认交易可能会成为检索请求的瓶颈,所以,我们必须依靠有效的链下支付。Filecoin区块链必须支持快速的支付通道,只有乐观交易和仅在出现纠纷的情况下才使用区块链。通过这种方式,检索矿工和客户端可以快速发送Filecoin协议所要求的小额支付。未来的工作里包含了创建一个如[11,12]所述的支付通道网络。

5.3.2 数据结构

  检索市场中包含有三种类型的订单:客户端创建的出价单 Obid,检索矿工创建的询价单Oask,和存储矿工和客户端达成的交易订单Odeal。订单的数据结构如图10所示。

获取订单簿

  检索市场的订单簿是有效的和公开出价订单,询价订单和交易订单的集合。与存储市场不同,每个用户有不同的订单簿试图,因为订单式在网络中传播的,每个矿工和客户端只会跟踪他们所感兴趣的订单。

5.3.3 检索市场协议

  简而言之,检索市场协议分为两个阶段:订单匹配和结算:

订单匹配

  客户端和检索矿工通过广播将订单提交给订单簿(步骤1)。当订单匹配的时候,客户端和检索矿工简历小额支付通道(步骤2)。

结算

  检索矿工发送小部分的碎片给到客户端,然后对每个碎片客户端会向矿工发送收妥的收据(步骤3)。检索矿工向区块链出示收据从而获得奖励(步骤4)。

  该协议在图12中详细解释。

本文标签:Filecoin 白皮书

上一篇:IPFS星际无限挖矿展望

下一篇:Filecoin白皮书(第6、7、8章)

猜您喜欢
关于我们联系我们作者投稿APP下载